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Atomic beam slowing and cooling: Discrete velocity model
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A discrete velocity model of the Boltzmann equation is established to investigate the effect of atomic beam
slowing and cooling by means of laser light. Due to momentum transfer, caused by absorption and emission
processes of photons, atoms are slowed. The Doppler effect, however, allows only selected atoms within a
certain resonance range to interact with the laser field. To overcome this problem an external electric field is
maintained. Semianalytical results of the velocity distribution as a function of the deceleration path of both
ground level atoms and excited atoms are presented in detail and studied explicitly for various values of the
laser intensity. A cooling limit is given and compared with quantum mechanical results.
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I. INTRODUCTION lation. In addition, statistical methods have been used to gain
insight into the process of resonant atom-photon interactions.

The particle distribution function of dilute gases in equi- Although by applying the Fokker-Planck equati¢dRPE
librium and nonequilibrium states is described by the Boltz{15-17 a realistic discussion of cooling in a Gaussian laser
mann equatiofl]. In its extended form not only elastic but beam seems to be promising, no general solutions of this
also inelastic interactions can be dealt wif. The interac- equation have been reported up to now. For a Gaussian laser
tion of a gas with a radiation field has been studied in thébeam this FPE is at least a five-variable partial differential
past mainly by means of a continuum approf@H]. A use-  equation with two spatial and two velocity coordinatkm-
ful introduction to the kinetic theory of particles interacting gitudinal and transver$eand an explicit time dependence.
with photons is given by Oxeniu$]. Current research ex- This multivariable dependence combined with an extremely
pands upon the original Boltzmann equation in a way thatapid variation of the distribution function with the velocity
elastic and inelastic terms for particle-particle collisions aremakes a directnumerical integration of this equation very
introduced and the evolution of the radiation field is takendifficult [18]. Wallis and Ertmef19] analyzed atomic beam
into account by means of a kinetic equation for photfls  deceleration with time-dependent drift and diffusion coeffi-
These complicated systems of Boltzmann-like differentialcients and compared different theoretical approaches.
and integro-differential equations are very difficult to solve. In this paper we analyze atomic beam cooling by applying

One way out of this problem is the discretization of thea discrete velocity model of the Boltzmann equation. Be-
velocity space[7,8]. Early discrete velocity models of the cause of the very litle momentum transfer of the atom-
continuous Boltzmann equation refer to idealized gases witphoton interaction, we use a sufficiently fine equidistant grid
only one or two particle spee8—11]. This was a big short- in the velocity space to obtain a realistic simulation of the
coming because the temperature was ill defined and it wasooling process. We study stationary states of the number
exaggerated to speak of a velocity distribution when onlydensities of both ground state atoms and excited atoms.
two velocity moduli were involved. The physical discrete There are two aspects why we investigate it by means of a
models, however, are the multispeed ohEZ). discrete velocity model. First, we demonstrate that the dis-

In the case of atomic beam slowing and cooling the atomsgrete Boltzmann equation yields an alternative description to
of the beam interact with counterpropagating laser photongyjuantum Monte Carlo methods and second, we want to gain
The atoms are slowed on grounds of momentum transfensight into the influence of the laser intensity. An essential
caused by absorption and emission processes. Due to tlaelvantage of our method is, in contrast to the quantum me-
Doppler effect only selected atoms within the resonancehanical treatment, that we can predict the velocity distribu-
range are able to absorb photons. An external electrical fieltdon of the atomic beam at all points of the deceleration path.
is maintained, holding atoms in resonance by utilizing theFurthermore, we are able to take into account the real atomic
Stark effect. Therefore, atomic beam slowing and cooling isand laser profiles and every kind of influence on the energy
a fascinating challenge for applying discrete kinetic modeldevels of the atoms of the beaf$tark effect or Zeemann
to investigate the space dependence of the velocity distribleffec) by introducing a space- and velocity-dependent cross-
tion of the atoms within the beam. section-like function into our model.

Several theoretical papefd3,14 treat the problem of In dealing with laser cooling, our model yields a system
atomic beam cooling mainly from a quantum mechanicalof linear first-order differential equations. Normally, Runge-
point of view. Starting with Wigner-Bloch equations, laser Kutta algorithms apply to solve such a system. However, due
cooling can be described by means of a Monte Carlo simuto the above-mentioned rapid variation of the distribution
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function, it is impossible to obtain physically relevant solu- Hence, due to the Doppler effect, only a few atoms within
tions. We therefore stratify the deceleration path and connec velocity intervalv,.s*=Av are able to interact with pho-
the layers by taking the “end densities” as initial data for thetons. However, we want to slow down almost all atoms
next layer. The discretization of the folded atomic Lorentzwithin the slab and for this reason, fa=[0,L] an electric
and the Gaussian laser profile leads to a system of linedield E(x) =jE(x) is introduced to compensate for the Dop-
differential equations with constant coefficients. The subsepler effect. Herei andj are unit vectors in thex and y
guent solution of this system of differential equations fordirections, respectively. Due to the Stark effect, the internal
each layer yields the number densities as superpositions ehergy jumpE,, depends ornx through E(x) so that the
exponential functions. Our formalism not only gives atransition frequencyr, becomes a function ok: vy(x)
straightforward intuitive interpretation of resonant radiation=E,,(x)/h (whereh is Planck’s constaint We assume that
pressure, allowing us to visualize the random walk and in€£,,(x) is a given, monotonically decreasing, function»of
ternal dynamics of an atom in a propagating external lighfor example,
wave, but also shows us how to implement this picture in a
numerical simulation of the distribution function. Ex(X)=cq(1—cCyX), 4
Section Il describes the general model in two dimensions
of the velocity space. Section Ill reduces the problem towith positive constants; andc,.
one-dimensional solutions. The semianalytical results are The interaction between atoms and photons leads to a
discussed in Sec. IV. We conclude in Sec. V. folding

® 4 1
Il. GENERAL MODEL F:Blzf dvf dQ—lV(r,Q,t)a'lz(V)
_ o v=0 Jo=0 4w
A. Physical situation

The physical system consists of ground level atofns _ f am
excited atom#\*, and photong. The mass of the atom#\( b(X.vx) ondﬂ (r. .0 ©®
andA*) is assumed to be almost the same:We callE;,

the energy jump between the two internal energy levels. Phoef the laser profile and the atomic profilsee, for instance,
tonsp are assumed to be at a fixed frequemgy Atoms and  [5]), with

photons interact within an infinite slab=[0,L]. At a posi-

tion x=0 and fory e [ —h;,h;] particlesA are continuously B,
injected with a direction normal to the slab. These atoms b(X’Ux):dZE[
follow a given velocity distribution. At a positior=L and

forye[—h;,h;] (wherehy,>h,), photons ata frequenay.  Thjs coefficientb(x,v,) contains both the Stark effect and
are continuously injected within a direction normal to the,q Doppler effect and regulates the interaction between at-
slab and are counterpropagating to the atoms. We considgns and photons within the slab. It has the meaning of a
the following mteractli)n events between atoms ang photongioss section. At a position, only particles with velocities
absorption, A+ p—A*; .sp.ontaneous emissionA _TA Uy [V min=tred L), 0 ma=0red 0)] interact with photons. The
+p’; and stimulated emissiod* +p—A+2p. Absorption  asonance speed is given by

and stimulated emission are described by means of the same

2 -1
+d§] . (6)

Eqo(X
VL(1+%)— 1;( )

Einstein-Milne absorption coefficierd,,. The decay con- Eqo(X)
stant of spontaneous emission is givenAyy . ViedX)=C hy —1} 7
In our model the specific intensity(r,€2,t) of impinging L
photons is characterized by By inserting Eq.(4) into Eq. (6) and settingv =0, we
L(r, 2,0 =1(r, Q1) 8(v—v)), 1) obtain, after some algebra,

which states the laser profile. The quantity,{2,t) is the b(X,0,) = v BioC I 1— X 2+02 -t ®)
intensity of the laser beam in directi€®d. The quantity X2y [T L 2

v . L . .

vi=w |1+ _X) 7) wherev, is the natural linewidth expressed in velocity space.

. . B. Discretization
denotes the laser frequency with reference to a moving atom

due to the Doppler effect, wherg=v-i andc is the speed Photons are allowed to attain only four directions in the
of light. The atomic profilea;,(v) (in the rest frame of the Plane .y):
atom is a Lorentz profile given by _ . _ .
e=—6=i, e=—e=j,
L 3) whereg is a unit vector(laser photons have directics).
(v—rg)°+ d%’ Atoms A andA* can attain only velocities that belong to the
following lattice in the planeX,y):

av)=

whered, measures the natural linewidth of the profile anpd
is the transition frequency. Vi = (ki+7]})Av, 9
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where the interaction contributions due to absorptia, (

Y spontaneous emission spontaneoussp), and stimulatedst) emission are given by
1=2 2
\ absorptjon
{ T ky=—bk(¥)I13N /-, (1139
1=1 i e,
stimulaled emigsion sp _ A_12 * N* +N* +N*
1=0 Tkr= ] (Nk1, T N1 TN TN ),
b ® ° (11b)
1=1 &
T r,=ba()13NF_, (119
=2
k=0 k=1 k=2 k=3 k=4 k=5 with b, (x) =b(kAv,x). For particles(k,/)*,
FIG. 1. Possible events for photon-atom interactions. On the . * _ gaxk spx stx
left-hand side the velocity lattice for atomdsandA* is shown. On Vieo VN =T v Tw? v T (12
the right-hand side the velocity vectors for photons are presented.
Wwhere
wherekeZ, /€7 (Z is the set of relative integersand Ja%—p X)I5N (133
Av=hp /mc, which is the change of the velocity of an s =B s
atom due to atom-photon interacti¢iig. 1). We denote by Spx _ *
. . F=—ANg 13b
(k,”) and (,”)* atomsA and A*, respectively, which T 1277 (139
have a velocit . Hereps is a photon with directio
(o123, P RAP " TR =B, (139
We neglect the interactions of secondary photons with
atoms. By taking into account momentum conservation, the D. Consideration of by (x)
following events are possiblebsorption In general,v,.{x) does not belong to the grid because
o vedX)/Av is not an integer. In order to ensure that the maxi-
(k) +ps—(k=1/) mum of b(x,v,) with respect tov, corresponds to a grid

point at each position, it is necessary to introduce a step-

wise approximation 4 X) of v,edX) such thab .{x)/Av is
always an integer:

and stimulated emission

(k,/)*+p3—(k+1/)+2p;.

. . . ~ Ures(X) *
According to momentum conservation, the following spon- Ured X) = Av Ao | (14
taneous emission events are allowed:
- ) , where[z]* is the integer part of.
(k,/)*—=(k=1/)+py The stepwise approximatidg,,(x) of E;(X), given by
—>(k,/—1)+pé ~
~ _ Ured X)
—(k+1,/)+p; Ep(x)=hy | 1+ c
—(k,/+1)+p;. Av[ ¢ [EjX) *
=nv_ T H ho -1 +1¢, (15
According to the circularly polarized driving field, the output -
prob_abll_lty is .1/3 in the transversal direction and 2/3 in thecorresponds t@,.{x). Finally, one can write
longitudinal direction.
B{y[k—k(x)]}, for ko<ks=k_
C. Equations of the model by(x) = . (16)
0 otherwise,

The number densities of particlésandA* at timet and
position (x,y) with velocity vy, are Ny (x,y,t)and \where y=p Av/ic, k(X)=0,d{X)/Av, ko=k(0), and k_

NE’/(x,y,t)_, respectively. The intensity_ls(x,y,t) (s =T<(L). Consequently, we have

=1,2,3,4) is the number of photopg per unit volume mul-

tiplied by chv in the directions. There is a zero Doppler T8, #0 for kysk=k,,
effect for photons 2 and 4 and a negative Doppler effect for ’

photon 1. Furthermore, we are only interested in stationary jifﬂﬁo for Ko+ 1<k=k,+1,

solutions of the problem. We can therefore write down the
kinetic equations for particle®\ and A*. For particles

(k,”), Tix#0 for kg—1sksk —1,

vk,/-VNk,/zjﬁy/Jrjﬁf’ﬂLjﬁf/, (10 jﬁf}*io for kosks=k, .
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Ill. ONE-DIMENSIONAL CASE (a)
1.5 T T T T T

With the model in mind, we want to study the one-
dimensional case. Atoms enter the deceleration path in direc
tion x counterpropagating to the laser beam. We assume the€
spontaneous emission only occurs in directioar —x and
that the intensityl ; is constant within the slab. Under these
restrictions we can formulate the balance equations for atom:
in the ground state,

Number density [arb. un

d
kAv = Ni(X,y)

- _ < + * + * i i i i i i i i
2 (Nict 2 Nie 1) B 100 TNk = bi(X) 15N, % 200 400 600 800 1000 1200 1400 1600 1800
(17) v [m/s]
(b)

and the excited state, 1.5 ; ! ;' : ! ! ; ;

d
KAD =N (X,Y) = b1 (1)1 5N = ApNE = b(X) 13N .
(18

The coefficient 1/2 in Eq(17) appears because photons can
be emitted spontaneously only in two different directions. In
order to obtain a system of coupled differential equationsg
with constant coefficients, we divide the deceleration path§
into ky=v max/Av layers. The thickness of one layer is given < j

r density [arb. units]

o
n
T

by Ax=L/ky. Within each layerx’ e[0,Ax], the coeffi-

cientsb(x") do not depend on the spatial variailedue to i i : i : i ; ;
the requirements oh,(x) in Sec. Il D. 0 200 400 600 800 1000 1200 1400 1600 1800
In each layer of the deceleration path, only atoms within v [m/s]
the resonance range are ablg to. interact with photons. The FIG. 2. (a) Velocity distribution of atoms in the ground state for
probability of an interaction is given b, (x). All other h : — _392 b) Depleti f th
toms are not affected, i.e., the corresponding number det-.e saturation casdl{=ls,) at x=3.2 mm. (b) Depletion of the
atc d h Th " d h b f diff .;&/lstnbutlon atx=552.5 mm. The dotted curve is the original Max-
sities do not change. This reduces the number of differentigf | yisiribution atx=0.
equations dramatically.
The reduced system corresponding to jtielayer can be
written as

ND(x'=Ax)=NI+D(x'=0), (21)

whereN®) (j=1,... ko) represents the nonreduced density

EQ(DZM(J)&(D (19 vectors. The coefficientg(qj) in Eq. (20) result from
dx ’

N C(j>:[v(i)]—l|\|(i)(x':0), (22
whereNU) is a vector including only the number densities of _ , , _ . _
affected atoms in the ground state and in the excited statevhere[C(”]%(c(l”_, - ,Cg)) and [VW]71 is the inverse
The sparse coefficient matrid ) results from the coupled matrix of V)= (V{), ... v, For the first layem®(x’

systemgEgs. (17) and (18)] of differential equations, how- =0) is a given velocity distribution.

ever, in its reduced form. The numbering of the components

of the density vector is done in such a way that the entries of IV. SEMIANALYTICAL RESULTS
the matrixM ) are very close to the main diagonal. Calcu-

lating the eigenvalueg!) and the eigenvectorg!) of the In this section the one-dimensional procedure of the
matrix M) we obtainnthe solution vector A above-mentioned layer method is applied to a special case.

Let us consider sodium atoms in the ground stat&,3 and

the excited state 3P,,. The corresponding transition is the
D, line. Maxwellian distributed sodium atoms at the ground
state emerge from an oven at a temperaturd 625 K.
Collimated to an atomic beam, they enter the interaction
whereS is the size of the matrix depending on the chosernzone atx=0. The typical length of the deceleration path in
discretization. The density distributions of each layer areexperiments is given by =650 mm. Absorption or emis-
connected by means of the condition of continuity sion of a photon changes the value of the speed of a sodium

s
NO(x')= > cVvlexp(z{x"), (20)
n=1
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Number density [arb. units]

0.4
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v [m/s] 800 1000 1200 1400 1800
. S v [m/s]
FIG. 3. Resolved velocity distribution of ground level atoms
(solid curve and excited atom$dashed-dotted curyeat x=3.2 (b)
mm. The dotted curve is the original Maxwell distribution at 1.5 5 ; ;' ; f ! f f
-0, : :

atom by an amounhv =2.94 cm/s. Starting at an initial ve-
locity of vy=1000 m/s, one needs approximately 35 000 dis-
cretization points to cover the interesting velocity range.
Due to the slow decay of the wings of the atomic Lorent-
zian profile, one needs a relatively wide velocity range to3
take into account all essential atom-photon interactions.§ s
Therefore, we obtain a system of approximately 40 000 dif- §
ferential equations. The solution described in the above sec
tion is important for theoretical considerations. Numerically,
it is more straightforward to apply an exponential matrix 0 i i . : : i ; .
formalism for solving the system of differential equations. 0 200 400 600 800 1000 1200 1400 1600 1800
Hence we use a series representation to replace the expone v [m/s]
tial matrix and end the calculation if the norm of the remain- ©
der is below a required relative error. 15

e

ensity [arb. units]

Nu

A. Saturation and cooling limit

units]

4 .

First, we consider the saturation case, where the intensit

=
—y

of the laser beanh; is sufficiently high (3=1s,) such that g A
all ground level atoms within the interaction range are >
400 ; J f r ; J % o L ? :
: z : : : oSy N
350 ........... ........... .......... .......... N AAAAAAAAAA AAAAAAAAAAA 2 . . . A N N

w
o
(=]

n
40
(=]

0 200 400 600 800 1000 1200 1400 1600 1800
J v [m/s]

—_

44

[=]
T

. FIG. 5. Velocity distributions of ground level atomsolid
curve atx=455 mm for different intensities of the laser beam. The
dotted curve represents the original Maxwell distributi¢a. |5

1 1 3
=7lsar (0) 13=3lsa, and(c) l3=7lsu

Number density [arb. units]
S
o

_

o

(=]
T

.

0 i i i - slowed. Figures @) and Zb) show the change of the Max-
137 138 139 140 . 141 142 143 144 el distribution of the ground level atoms during the cool-
vIml ing process. Fast atoms are slowed to lower velocities gen-
FIG. 4. Resolved cooling peak of ground level atorsslid ~ erating the so-called cooling peakFig. 2a]. The
curve at x=552.5 mm. The width of the peak is given W successively growing cooling peak moves with increasing
=2.26 m/s. The dashed-dotted curve represents the velocity distrffrom v =v t0 v =v 1y [Fig. 2(b)]. A resolution of the cool-
bution of the excited atoms. ing peak of the ground level atonisolid curve as well as of
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the excited atomgdash-dotted curyeat x=3.2 mm is dis- intensity ofl ;= 21,[Fig. 5c)] almost all atoms are affected

played in Fig. 3. The peak of the excited atoms is asymmetripy the cooling process. Only a few fast atoms have a chance

cal because atoms out of the resonance range decay only escape an interaction with photons.

spontaneously. The cooling peak at the end of the interaction

zone (Fig. 4) is a Gaussian-like, bell-shaped curve. The V. CONCLUSION

width of the peak is a measure of the efficiency of laser

cooling. The average kinetic energy of the particles within ~ This paper treats the mechanism of atom-photon interac-

the cooling peak and therefore also the kinetic temperaturetion from a statistical point of view. In particular, the mecha-
nism studied here allows one to describe radiation pressure

” ) effects of resonant light on free atoms. For the scenario of a
m ;0 Ni(vi—u) Stark effect laser cooling device, a discrete velocity model of
T=———F— (23)  the Boltzmann equation is developed. It leads to a system of
Kef E N coupled differential equations governing the number densi-

I

“= ties of atoms for each discrete velocity. A velocity- and
space-dependent cross section, resulting from the Stark and
is very low. Herem is the mass of the atomkg is Boltz- the Doppler effect by taking into account the atomic and
mann’s constanty denotes the mean velocity, ads the laser profile, regulates the slowing of atoms. By dividing the
number of degrees of freedom. For the chosen discretizatiointeraction zone into a high number of very thin layers, the
we obtain a temperature df=3520uK, which is in good coefficients of the differential equations become constant and
agreement witilf =4300uK [13] obtained by quantum me- its solution can be represented as a superposition of expo-
chanical calculations. nential functions. The obtained velocity distribution of
The lowest possible temperature, the so-called coolinglowed atoms at each point of the deceleration path is studied
limit, depends mainly on the form of the atomic profile. Sup-in detail. Also the influence of the laser intensity on the net
posing a step function instead of the Lorentzian profile, themomentum transfer from the laser photons to the atoms is

width of the so-obtained cooling peak is exacNy (recoil  investigated.
limit). We would like to emphasize that our semianalytic method
is precise and much more efficient than a solution by means
B. Low intensities of a Runge-Kutta algorithm. It turns out that in the case of a

Runge-Kutta integration it is impossible to overcome the

In the case of low intensities, not all atoms within the_stepsize and storage problems resulting from the occurrence
resonance range interact with photons. Many atoms remaifi yer, sharp peaks of the solution functions

in their velocity CI"?‘SS?S' When the intensity_approaches ZEr0, e plan to extend our numerical computations to higher-
the Maxwe]l dlstr|put|qn IS not changed. F|gure(sa)55(c)_ _dimensional configuration spaces and velocity spaces in or-
Sh‘?"" hOW. mcreasmg'lntensmes change_ the l\./la>'<well dIStrI'der to treat transversal heating. Furthermore, it should be
bution during the cooling process. If the intensity is very IOWpossibIe to deal with multilevel systems and to take into

I 3= 3%l s as in Fig. %a), the resulting velocity distribution is account the variation of the photon field.
characterized by a notch ag, a cooling peak at low veloci-

ties, and a nearly unchanged distribution in between. The

typical notch atv, arises because at first, fast atoms are

slpwed ar_1d form a peak ata little bit lower velocme_s._ Then ACKNOWLEDGMENTS
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