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Atomic beam slowing and cooling: Discrete velocity model

C. Reitshammer and F. Schu¨rrer
Institut für Theoretische Physik, Technische Universita¨t Graz, Petersgasse 16, A-8010 Graz, Austria

A. Rossani
Dipartimento di Matematica, Politecnico di Torino, Corso Duca Abruzzi 24, I-10129 Torino, Italy
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A discrete velocity model of the Boltzmann equation is established to investigate the effect of atomic beam
slowing and cooling by means of laser light. Due to momentum transfer, caused by absorption and emission
processes of photons, atoms are slowed. The Doppler effect, however, allows only selected atoms within a
certain resonance range to interact with the laser field. To overcome this problem an external electric field is
maintained. Semianalytical results of the velocity distribution as a function of the deceleration path of both
ground level atoms and excited atoms are presented in detail and studied explicitly for various values of the
laser intensity. A cooling limit is given and compared with quantum mechanical results.
@S1063-651X~98!03609-5#

PACS number~s!: 02.70.2c, 05.20.Dd, 32.80.Pj
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I. INTRODUCTION

The particle distribution function of dilute gases in equ
librium and nonequilibrium states is described by the Bo
mann equation@1#. In its extended form not only elastic bu
also inelastic interactions can be dealt with@2#. The interac-
tion of a gas with a radiation field has been studied in
past mainly by means of a continuum approach@3,4#. A use-
ful introduction to the kinetic theory of particles interactin
with photons is given by Oxenius@5#. Current research ex
pands upon the original Boltzmann equation in a way t
elastic and inelastic terms for particle-particle collisions
introduced and the evolution of the radiation field is tak
into account by means of a kinetic equation for photons@6#.
These complicated systems of Boltzmann-like differen
and integro-differential equations are very difficult to solv

One way out of this problem is the discretization of t
velocity space@7,8#. Early discrete velocity models of th
continuous Boltzmann equation refer to idealized gases w
only one or two particle speeds@9–11#. This was a big short-
coming because the temperature was ill defined and it
exaggerated to speak of a velocity distribution when o
two velocity moduli were involved. The physical discre
models, however, are the multispeed ones@12#.

In the case of atomic beam slowing and cooling the ato
of the beam interact with counterpropagating laser photo
The atoms are slowed on grounds of momentum tran
caused by absorption and emission processes. Due to
Doppler effect only selected atoms within the resona
range are able to absorb photons. An external electrical fi
is maintained, holding atoms in resonance by utilizing
Stark effect. Therefore, atomic beam slowing and cooling
a fascinating challenge for applying discrete kinetic mod
to investigate the space dependence of the velocity distr
tion of the atoms within the beam.

Several theoretical papers@13,14# treat the problem of
atomic beam cooling mainly from a quantum mechani
point of view. Starting with Wigner-Bloch equations, las
cooling can be described by means of a Monte Carlo sim
PRE 581063-651X/98/58~3!/3964~7!/$15.00
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lation. In addition, statistical methods have been used to g
insight into the process of resonant atom-photon interactio
Although by applying the Fokker-Planck equation~FPE!
@15–17# a realistic discussion of cooling in a Gaussian la
beam seems to be promising, no general solutions of
equation have been reported up to now. For a Gaussian
beam this FPE is at least a five-variable partial differen
equation with two spatial and two velocity coordinates~lon-
gitudinal and transverse! and an explicit time dependence
This multivariable dependence combined with an extrem
rapid variation of the distribution function with the velocit
makes a direct~numerical! integration of this equation very
difficult @18#. Wallis and Ertmer@19# analyzed atomic beam
deceleration with time-dependent drift and diffusion coe
cients and compared different theoretical approaches.

In this paper we analyze atomic beam cooling by apply
a discrete velocity model of the Boltzmann equation. B
cause of the very little momentum transfer of the ato
photon interaction, we use a sufficiently fine equidistant g
in the velocity space to obtain a realistic simulation of t
cooling process. We study stationary states of the num
densities of both ground state atoms and excited ato
There are two aspects why we investigate it by means o
discrete velocity model. First, we demonstrate that the d
crete Boltzmann equation yields an alternative description
quantum Monte Carlo methods and second, we want to g
insight into the influence of the laser intensity. An essen
advantage of our method is, in contrast to the quantum
chanical treatment, that we can predict the velocity distrib
tion of the atomic beam at all points of the deceleration pa
Furthermore, we are able to take into account the real ato
and laser profiles and every kind of influence on the ene
levels of the atoms of the beam~Stark effect or Zeemann
effect! by introducing a space- and velocity-dependent cro
section-like function into our model.

In dealing with laser cooling, our model yields a syste
of linear first-order differential equations. Normally, Rung
Kutta algorithms apply to solve such a system. However,
to the above-mentioned rapid variation of the distributi
3964 © 1998 The American Physical Society
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function, it is impossible to obtain physically relevant sol
tions. We therefore stratify the deceleration path and conn
the layers by taking the ‘‘end densities’’ as initial data for t
next layer. The discretization of the folded atomic Loren
and the Gaussian laser profile leads to a system of lin
differential equations with constant coefficients. The sub
quent solution of this system of differential equations
each layer yields the number densities as superposition
exponential functions. Our formalism not only gives
straightforward intuitive interpretation of resonant radiati
pressure, allowing us to visualize the random walk and
ternal dynamics of an atom in a propagating external li
wave, but also shows us how to implement this picture i
numerical simulation of the distribution function.

Section II describes the general model in two dimensi
of the velocity space. Section III reduces the problem
one-dimensional solutions. The semianalytical results
discussed in Sec. IV. We conclude in Sec. V.

II. GENERAL MODEL

A. Physical situation

The physical system consists of ground level atomsA,
excited atomsA* , and photonsp. The mass of the atoms (A
andA* ) is assumed to be almost the same:m. We call E12
the energy jump between the two internal energy levels. P
tonsp are assumed to be at a fixed frequencynL . Atoms and
photons interact within an infinite slabxP@0,L#. At a posi-
tion x50 and foryP@2h1 ,h1# particlesA are continuously
injected with a direction normal to the slab. These ato
follow a given velocity distribution. At a positionx5L and
for yP@2h2 ,h2# ~whereh2.h1), photons at a frequencynL
are continuously injected within a direction normal to t
slab and are counterpropagating to the atoms. We cons
the following interaction events between atoms and photo
absorption, A1p→A* ; spontaneous emission,A*→A
1p8; and stimulated emission,A* 1p→A12p. Absorption
and stimulated emission are described by means of the s
Einstein-Milne absorption coefficientB12. The decay con-
stant of spontaneous emission is given byA21.

In our model the specific intensityI n(r ,V,t) of impinging
photons is characterized by

I n~r ,V,t !5I ~r ,V,t !d~n2nL8 !, ~1!

which states the laser profile. The quantityI (r ,V,t) is the
intensity of the laser beam in directionV. The quantity

nL85nLS 11
vx

c D ~2!

denotes the laser frequency with reference to a moving a
due to the Doppler effect, wherevx5v–i andc is the speed
of light. The atomic profilea12(n) ~in the rest frame of the
atom! is a Lorentz profile given by

a12~n!5
d2 /p

~n2n0!21d2
2

, ~3!

whered2 measures the natural linewidth of the profile andn0
is the transition frequency.
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Hence, due to the Doppler effect, only a few atoms with
a velocity intervalv res6Dv are able to interact with pho
tons. However, we want to slow down almost all atom
within the slab and for this reason, forxP@0,L# an electric
field E(x)5 jE(x) is introduced to compensate for the Do
pler effect. Herei and j are unit vectors in thex and y
directions, respectively. Due to the Stark effect, the inter
energy jumpE12 depends onx through E(x) so that the
transition frequencyn0 becomes a function ofx: n0(x)
5E12(x)/h ~whereh is Planck’s constant!. We assume tha
E12(x) is a given, monotonically decreasing, function ofx,
for example,

E12~x!5c1~12c2x!, ~4!

with positive constantsc1 andc2.
The interaction between atoms and photons leads t

folding

F5B12E
n50

`

dnE
V50

4p

dV
1

4p
I n~r ,V,t !a12~n!

5b~x,vx!E
V50

4p

dV I ~r ,V,t ! ~5!

of the laser profile and the atomic profile~see, for instance
@5#!, with

b~x,vx!5d2

B12

4p2H FnLS 11
vx

c D2
E12~x!

h G2

1d2
2J 21

. ~6!

This coefficientb(x,vx) contains both the Stark effect an
the Doppler effect and regulates the interaction between
oms and photons within the slab. It has the meaning o
cross section. At a positionx, only particles with velocities
vxP@vmin5vres(L),vmax5vres(0)# interact with photons. The
resonance speed is given by

v res~x!5cFE12~x!

hnL
21G . ~7!

By inserting Eq.~4! into Eq. ~6! and settingvmin50, we
obtain, after some algebra,

b~x,vx!5v2

B12c

4p2nL
H Fvx2vmaxS 12

x

L D G2

1v2
2J 21

, ~8!

wherev2 is the natural linewidth expressed in velocity spac

B. Discretization

Photons are allowed to attain only four directions in t
plane (x,y):

e152e35 i, e252e45 j ,

whereei is a unit vector~laser photons have directione3).
AtomsA andA* can attain only velocities that belong to th
following lattice in the plane (x,y):

vk,l 5~ki1l j !Dv, ~9!
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where kPZ, l PZ (Z is the set of relative integers!, and
Dv5hnL /mc, which is the change of the velocity of a
atom due to atom-photon interaction~Fig. 1!. We denote by
(k,l ) and (k,l )* atoms A and A* , respectively, which
have a velocityvk,l . Here ps is a photon with directiones
(s51,2,3,4!.

We neglect the interactions of secondary photons w
atoms. By taking into account momentum conservation,
following events are possible:absorption

~k,l !1p3→~k21,l !*

andstimulated emission

~k,l !* 1p3→~k11,l !12p3 .

According to momentum conservation, the following spo
taneous emission events are allowed:

~k,l !*→~k21,l !1p18

→~k,l 21!1p28

→~k11,l !1p38

→~k,l 11!1p48 .

According to the circularly polarized driving field, the outp
probability is 1/3 in the transversal direction and 2/3 in t
longitudinal direction.

C. Equations of the model

The number densities of particlesA andA* at timet and
position (x,y) with velocity vk,l are Nk,l (x,y,t)and
Nk,l* (x,y,t), respectively. The intensityI s(x,y,t) (s
51,2,3,4) is the number of photonsps per unit volume mul-
tiplied by chnL in the directions. There is a zero Dopple
effect for photons 2 and 4 and a negative Doppler effect
photon 1. Furthermore, we are only interested in station
solutions of the problem. We can therefore write down
kinetic equations for particlesA and A* . For particles
(k,l ),

vk,l •“Nk,l 5J k,l
a 1J k,l

sp 1J k,l
st , ~10!

FIG. 1. Possible events for photon-atom interactions. On
left-hand side the velocity lattice for atomsA andA* is shown. On
the right-hand side the velocity vectors for photons are presen
h
e

-

r
ry
e

where the interaction contributions due to absorption (a),
spontaneous~sp!, and stimulated~st! emission are given by

J kl
a 52bk~x!I 3Nk,l , ~11a!

J k,l
sp 5

A12

4
~Nk11,l* 1Nk21,l* 1Nk,l 11* 1Nk,l 21* !,

~11b!

J k,l
st 5bk21~x!I 3Nk21,l* , ~11c!

with bk(x)5b(kDv,x). For particles (k,l )* ,

vk,l •“Nk,l* 5J k,l
a,* 1J k,l

sp,* 1J k,l
st,* , ~12!

where

J k,l
a,* 5bk11~x!I 3Nk11,l , ~13a!

J k,l
sp,* 52A12Nk,l* , ~13b!

J k,l
st,* 52bk~x!I 3Nk,l* . ~13c!

D. Consideration of bk„x…

In general,v res(x) does not belong to the grid becau
v res(x)/Dv is not an integer. In order to ensure that the ma
mum of b(x,vx) with respect tovx corresponds to a grid
point at each positionx, it is necessary to introduce a ste
wise approximationṽ res(x) of v res(x) such thatṽ res(x)/Dv is
always an integer:

ṽ res~x!5DvFv res~x!

Dv G* , ~14!

where@z#* is the integer part ofz.
The stepwise approximationẼ12(x) of E12(x), given by

Ẽ12~x!5hnLS 11
ṽ res~x!

c
D

5hnLH Dv
c F c

Dv S E12~x!

hnL
21D G* 11J , ~15!

corresponds toṽ res(x). Finally, one can write

bk~x!5H B$g@k2 k̃~x!#%, for k0<k<kL

0 otherwise,
~16!

where g5nLDv/c, k̃(x)5 ṽ res(x)/Dv, k05 k̃(0), and kL

5 k̃(L). Consequently, we have

J k,l
a Þ0 for k0<k<kL ,

J k,l
st Þ0 for k011<k<kL11,

J k,l
a,* Þ0 for k021<k<kL21,

J k,l
st,* Þ0 for k0<k<kL .

e

.
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III. ONE-DIMENSIONAL CASE

With the model in mind, we want to study the on
dimensional case. Atoms enter the deceleration path in di
tion x counterpropagating to the laser beam. We assume
spontaneous emission only occurs in directionx or 2x and
that the intensityI 3 is constant within the slab. Under thes
restrictions we can formulate the balance equations for at
in the ground state,

kDv
d

dx
Nk~x,y!

5
A12

2
~Nk11* 1Nk21* !1bk21~x!I 3Nk21* 2bk~x!I 3Nk ,

~17!

and the excited state,

kDv
d

dx
Nk* ~x,y!5bk11~x!I 3Nk112A12Nk* 2bk~x!I 3Nk* .

~18!

The coefficient 1/2 in Eq.~17! appears because photons c
be emitted spontaneously only in two different directions.
order to obtain a system of coupled differential equatio
with constant coefficients, we divide the deceleration p
into k05vmax/Dv layers. The thickness of one layer is give
by Dx5L/k0. Within each layerx8P@0,Dx#, the coeffi-
cientsbk(x8) do not depend on the spatial variablex8 due to
the requirements onbk(x) in Sec. II D.

In each layer of the deceleration path, only atoms wit
the resonance range are able to interact with photons.
probability of an interaction is given bybk(x). All other
atoms are not affected, i.e., the corresponding number
sities do not change. This reduces the number of differen
equations dramatically.

The reduced system corresponding to thej th layer can be
written as

d

dx
N̂~ j !5M ~ j !N̂~ j !, ~19!

whereN̂( j ) is a vector including only the number densities
affected atoms in the ground state and in the excited s
The sparse coefficient matrixM ( j ) results from the coupled
systems@Eqs. ~17! and ~18!# of differential equations, how-
ever, in its reduced form. The numbering of the compone
of the density vector is done in such a way that the entrie
the matrixM ( j ) are very close to the main diagonal. Calc
lating the eigenvalueszn

( j ) and the eigenvectorsVn
( j ) of the

matrix M ( j ), we obtain the solution vector

N̂~ j !~x8!5 (
n51

S

cn
~ j !Vn

~ j !exp~zn
~ j !x8!, ~20!

whereS is the size of the matrix depending on the chos
discretization. The density distributions of each layer
connected by means of the condition of continuity
c-
at
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N~ j !~x85Dx!5N~ j 11!~x850!, ~21!

whereN( j ) ( j 51, . . . ,k0) represents the nonreduced dens
vectors. The coefficientscn

( j ) in Eq. ~20! result from

C~ j !5@V~ j !#21N̂~ j !~x850!, ~22!

where @C( j )# t5(c1
( j ) , . . . ,cS

( j )) and @V( j )#21 is the inverse
matrix of V( j )5(V1

( j ) , . . . ,VS
( j )). For the first layerN(1)(x8

50) is a given velocity distribution.

IV. SEMIANALYTICAL RESULTS

In this section the one-dimensional procedure of
above-mentioned layer method is applied to a special c
Let us consider sodium atoms in the ground state 32S1/2 and
the excited state 32P3/2. The corresponding transition is th
D2 line. Maxwellian distributed sodium atoms at the grou
state emerge from an oven at a temperature ofT5625 K.
Collimated to an atomic beam, they enter the interact
zone atx50. The typical length of the deceleration path
experiments is given byL5650 mm. Absorption or emis-
sion of a photon changes the value of the speed of a sod

FIG. 2. ~a! Velocity distribution of atoms in the ground state fo
the saturation case (I 35I sat) at x53.2 mm. ~b! Depletion of the
distribution atx5552.5 mm. The dotted curve is the original Ma
well distribution atx50.
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atom by an amountDv52.94 cm/s. Starting at an initial ve
locity of v051000 m/s, one needs approximately 35 000 d
cretization points to cover the interesting velocity range.

Due to the slow decay of the wings of the atomic Lore
zian profile, one needs a relatively wide velocity range
take into account all essential atom-photon interactio
Therefore, we obtain a system of approximately 40 000
ferential equations. The solution described in the above
tion is important for theoretical considerations. Numerica
it is more straightforward to apply an exponential mat
formalism for solving the system of differential equation
Hence we use a series representation to replace the expo
tial matrix and end the calculation if the norm of the rema
der is below a required relative error.

A. Saturation and cooling limit

First, we consider the saturation case, where the inten
of the laser beamI 3 is sufficiently high (I 35I sat) such that
all ground level atoms within the interaction range a

FIG. 3. Resolved velocity distribution of ground level atom
~solid curve! and excited atoms~dashed-dotted curve! at x53.2
mm. The dotted curve is the original Maxwell distribution atx
50.

FIG. 4. Resolved cooling peak of ground level atoms~solid
curve! at x5552.5 mm. The width of the peak is given bydv
52.26 m/s. The dashed-dotted curve represents the velocity d
bution of the excited atoms.
-

-
o
s.
f-
c-
,

.
en-
-

ity

slowed. Figures 2~a! and 2~b! show the change of the Max
well distribution of the ground level atoms during the coo
ing process. Fast atoms are slowed to lower velocities g
erating the so-called cooling peak@Fig. 2~a!#. The
successively growing cooling peak moves with increasinx
from v5v0 to v5vmin @Fig. 2~b!#. A resolution of the cool-
ing peak of the ground level atoms~solid curve! as well as of

ri-

FIG. 5. Velocity distributions of ground level atoms~solid
curve! at x5455 mm for different intensities of the laser beam. T
dotted curve represents the original Maxwell distribution.~a! I 3

5
1
4 I sat, ~b! I 35

1
2 I sat, and~c! I 35

3
4 I sat.
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the excited atoms~dash-dotted curve! at x53.2 mm is dis-
played in Fig. 3. The peak of the excited atoms is asymme
cal because atoms out of the resonance range decay
spontaneously. The cooling peak at the end of the interac
zone ~Fig. 4! is a Gaussian-like, bell-shaped curve. T
width of the peak is a measure of the efficiency of la
cooling. The average kinetic energy of the particles with
the cooling peak and therefore also the kinetic temperatu

T5
m

kBf

(
i 50

`

Ni~v i2u!2

(
i 50

`

Ni

~23!

is very low. Herem is the mass of the atoms,kB is Boltz-
mann’s constant,u denotes the mean velocity, andf is the
number of degrees of freedom. For the chosen discretiza
we obtain a temperature ofT53520mK, which is in good
agreement withT54300mK @13# obtained by quantum me
chanical calculations.

The lowest possible temperature, the so-called coo
limit, depends mainly on the form of the atomic profile. Su
posing a step function instead of the Lorentzian profile,
width of the so-obtained cooling peak is exactlyDv ~recoil
limit !.

B. Low intensities

In the case of low intensities, not all atoms within th
resonance range interact with photons. Many atoms rem
in their velocity classes. When the intensity approaches z
the Maxwell distribution is not changed. Figures 5~a!–5~c!
show how increasing intensities change the Maxwell dis
bution during the cooling process. If the intensity is very lo
I 35 1

4 I sat, as in Fig. 5~a!, the resulting velocity distribution is
characterized by a notch atv0, a cooling peak at low veloci-
ties, and a nearly unchanged distribution in between.
typical notch atv0 arises because at first, fast atoms a
slowed and form a peak at a little bit lower velocities. Th
this peak increases and simply moves to lower velocities.
higher intensitiesI 35 1

2 I sat @Fig. 5~b!#, the cooling peak and
the peak of the excited atoms increase. Because of a gr
interaction probability per unit path length for atoms wi
lower velocities, increasingly more atoms are slowed. At
s

o

i-
nly
n

r

e

n,

g
-
e

in
o,

i-

e
e

or

ter

n

intensity ofI 35 3
4 I sat @Fig. 5~c!# almost all atoms are affecte

by the cooling process. Only a few fast atoms have a cha
to escape an interaction with photons.

V. CONCLUSION

This paper treats the mechanism of atom-photon inte
tion from a statistical point of view. In particular, the mech
nism studied here allows one to describe radiation pres
effects of resonant light on free atoms. For the scenario
Stark effect laser cooling device, a discrete velocity mode
the Boltzmann equation is developed. It leads to a system
coupled differential equations governing the number den
ties of atoms for each discrete velocity. A velocity- an
space-dependent cross section, resulting from the Stark
the Doppler effect by taking into account the atomic a
laser profile, regulates the slowing of atoms. By dividing t
interaction zone into a high number of very thin layers, t
coefficients of the differential equations become constant
its solution can be represented as a superposition of e
nential functions. The obtained velocity distribution
slowed atoms at each point of the deceleration path is stu
in detail. Also the influence of the laser intensity on the n
momentum transfer from the laser photons to the atom
investigated.

We would like to emphasize that our semianalytic meth
is precise and much more efficient than a solution by me
of a Runge-Kutta algorithm. It turns out that in the case o
Runge-Kutta integration it is impossible to overcome t
stepsize and storage problems resulting from the occurre
of very sharp peaks of the solution functions.

We plan to extend our numerical computations to high
dimensional configuration spaces and velocity spaces in
der to treat transversal heating. Furthermore, it should
possible to deal with multilevel systems and to take in
account the variation of the photon field.
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